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INTRODUCTION

In this paper we shall consider certain aspects of nonlinear approximation
of smooth functions in the L 1 norm on an interval [a, b] of the real line. In
particular it will be shown that under certain circumstances (which would
include many practical situations) second derivative techniques are applicable.
This leads to checkable sufficient conditions for a local best approximation
and makes applicable certain numerical techniques such as Newton's method.
We also consider the unicity problem and extend certain results in [1,2]
given for Lv spaces with p ~ 2 to the setting of this paper.

The approximation problem we consider is as follows. An open set S of
Euclidean N-space EN is given and a map A(·): S --+ C[a, b] such that the
map x --+ AI/(x, " .) is continuous on S where AI/(x, " .) is the second Frechet
derivative of the map A at the point x. Moreover we will assume that

(1) For each XES, {(8Aj8x1)(x), ... , (8Aj8xN)(X)} spans a Haar subspace
of C[a, b] of dimension d(x) ~ N.

(2) For each x, YES, A(x) - A( y) is either identically zero or has at
most N - 1 roots in [a, b].

(3) Each A(x)(t) is analytic on [a, b] with respect to t and moreover,
if Xv --+ X o then (djdt) A(xv)(t) converges uniformly to (djdt) A(xo)(t) on
[a, b].

Then given fE C[a, b] we seek A(x*) E A(S) - {A(x) IXES} such thatf: IA(x*)(t) - j(t)1 dt = inf"'Es f: IA(x)(t) - j(t)1 dt.
The standard nonlinear families encountered in practice such as the

rational functions and the exponentials satisfy the hypotheses (1)-(3) so that
the class of approximating families considered here is a useful one.

* Research for this paper was supported in part by the Graduate School, Department
of Mathematics, University of Oregon, Eugene, Oregon.
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Our analysis requires that we establish the Frechet differentiability of
certain maps. However, it is more convenient to calculate directional or
Gateaux derivatives and so we will use the following basic fact from multi­
variate calculus.

LEMMA 1. Suppose cp is a real valued map defined on an open subset ofEly
such that rp is Gateaux differentiable on a neighborhood of Xo and such that for
each h, the map x ---+ cp'(x, h) is continuous at X o . Then 'f! is Frechet
differentiable at X o .

We shall not distinguish notationally between the two types since in each
case the above lemma will be applicable. The following lemma is also
standard and we shall not present a proof here. The set Z(x) (defined below)
is crucial to the result and we refer the reader to the work of Kripke and
RivEn [5J for a thorough analysis of its role in L 1 problems.

LEMMA 2. Assume thatfor each XES the set Z(x) == {t E [a, b] 1 A(x)(t) =
j(t)} has Lebesgue measure zero. Then thefunctionF(x) = f~ I A(x)(t) - j(t)1 dt
is continuously Frechet differentiable on Sand

F'(x, h) = S: sgn(A(x)(t) - jet)) A'(x, h)(t) dt for all hE EN where
A/(x, .) is the Frechet derivative of A at x.

The following necessary condition for a best approximation is now clear.

COROLLARY 1. Suppose A(xo) is a local best approximation to f
and assume Z(x) has measure zero for all XeS. Then J~ sgn(A(xo)(t) - jet)~ X

A'(xo , h)(t) dt = Ofor all hE EN.

DERIVATIVES

The following is the basic result of this paper.

THEOREM 1. Let f E qa, b] be differentiable on (a, b) and let A(x) e A(S).
Assume that E(t) = A(x)(t) - jet) has precisely K roots in [a, b] say
t1 < ... < tK all in the interior of [a, b] such that (dEldt)(t j) eft OJ = 1, ... , K.
The functional F(x) = I: [A(x)(t) - j(t)1 dt is twice continuously Frechet
differentiable at x and in fact

F"( - h k) - ~ A'(x, h)(tj) A'(x, k)(tj) J'b (cc( )1 A"( i k)() "
. x" - /::1 I(dEldt)(t j)I + a sgn ~ t I x, 11, t at

for each h, Ie E EN where the first sum is empty If K = o.
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Proof Let h, kEEN be arbitrary and define E(A, t) = A(x + Ak)(t) - f(t)
for t E [a, b] and 1'\ I sufficiently small that x + Ak E S. Then

[F'(x + Ak, h) - F'(x, h)]/A

= r[sgn(E(A, t» A'(x + Ak, h)(t) - sgn(E(O, t» A'(x, h)(t) dt]/A
a

= r [(sgn(E(A, t» - sgn(E(O, t»)/A] A'(x, h)(t) dt
a

+rsgn E(A, t)[(A'(x + Ak, h)(t) - A'(x, h)(t»j,\] - 1ICA) + 12(A).
a

It is clear by the Lebesgue dominated convergence theorem that MA) ---->­

J~ sgn(A(x)(t) - f(t» AI/(x, h, k)(t) dt as A ---->- 0. To calculate lim,\_>o 11(A) we
first note that (OE/oA)(A, t) = A'(x + Ak, k)(t) and (oE/ot)(A, t) is nonzero at
(0, t j ) for each j = 1, , K and both partial derivatives are continuous.
Letting tlO) === t j j = 1, , K and applying the implicit function theorem in
a neighborhood of each tlO) separately we find that there is a Ao > Osuch
that for each A and j with I A I ~ Ao there is a unique tlA) such that
E(A, tiCA» = 0. Moreover,

dt '(\) A'(x + Ak, k)(tp». 1
dA] /\ = - (oE/8t)(A, tj(A» ] = ,... , K.

By perhaps restricting Afurther we may assume that E(A, t) has no other roots
in [0,1] and that I tiCA) - tj(O) I < min{1 tm(O) - tiCO)!, I tH(O) - tj(O)[}.
Thus, letting exiCA) = min(tlA), tiCO» and fJlA) = max(tj(A), tj(O» we may
write 11(A) in the form

since sgn(E(A, t» = sgn(E(O, t» except on the intervals (exP), fJiCA». Since
J:::::::; ¢J(t) dt = sgn(f3 - ex) f~ ¢J(t) dt, 11(A) becomes

£(sgn tiCA) - tlO» ft;(,\) [sgn(E(A, t» ~ sgn(E(O, t»] A'(x, h)(t) dt. (*)
j~l t;<,l)

Suppose that E(O, a) > 0. Then to evaluate

f
t1

('\) [sgn(E(A, t» - sgn(E(O, t»] A'(x, h)(t) dt (**)
t 1 (0) A
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we consider two cases:

(a) tl(O) < tl(.\). Then (**) becomes

2 ft1
(A) A'(x, h)(t) dt

t1 (0) .\

t1(A) A/(x h)(t)
= (-l)H 2 sgn(teO, a)) sgn(tl (.\) - tl(O)) f ~ dt

t1 (0)

wherej = 1.

(b) tl(O) ~ tl (.\). Then (**) becomes

-2 .t1 (A) A'(x, h)(t) dt
Jt1 (0) .\

169

t1(A) A'(x h)(t)
= (-l)H ·2· (sgn E-(O, a)) sgn(tl(.\) - tl(O)) f ~ dt.

t1 (0)

Clearly, this formula (in (a) or (b)) is still valid if teO, a) < O. Because of the
alternation of sgn(€(A., t)) at tl.\) it is easy to see that the general relationship
is

fj(A) [ sgn(€(.\, t)) ~ sgn(€(O, t)) ] A'(x, h)(t) dt
tj(O)

= (-l)H 2 sgn(€(O, a)) sgn(tl.\) - tJ{O)) fj(A) A'(x~h)(t) dt
tj(O)

But

1 0W 1 ~w ~oo
Xf A'(x, h)(t) dt = X[f A'(x, h)(t) dt - f A'(x, h)(t) dt]

tj(o) tj(O) tj(O)

and passing to the limit we obtain

1 t1 (A)

lim\" J A'(x, h)(t) dt
A""O 1\ t ;(0)

d tj(A) 0

= d.\ f A'(x, h)(t) dt I
t;<o) A~O

= A'(x, h)(tl.\)) t/(.\) IA~O

= -A'(x + .\k, k)(tl.\)) . A'(x, h)(tJC.\)) I
(O€jot)(.\, t;(.\))A~O

(-1) A'(x, k)(tlO)) A'(x, h)(t;(O))
(O€jot)(O, tlO))
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Finally it is simple to check that sgn(oe/ot)(O, t;(O)) = (-1)1 sgn e(O, a)
j = 1,... , K. Thus we obtain

[

t;(A) A'(x h)(t)
lim (-1)J-1 2 sgn(e(O, a)) sgn(t;(A) - t;(O)) f ~ dt]
~o t;~

= (-1)1-12 sgn(e(O, a)) sgn(t;(A) - t;(O))

(-1) A'(x, k)(t;(O)) A'(x, h)(t;(O))
X (-l)j sgn(e(O, a)) l(oe/ot)(O, t;(O)) [

sgn(t;(A) -..C t;(O)) A'(x, k)(t;(O)) A'(x, h)(t;(O))
[(oe/ot)(O, tj(O))1

and substituting into (*) we have the desired value for limA..,.o Il(A). Thus
formula (1) is valid for directional derivatives. The fact that F(x) is actually
twice continuously Frechet differentiable follows easily from the fact that
x -+ AI/(x, ., .) is continuous on S and that (using assumption (3)) as

x,,-+x,
dA dA
(it (x,,)(t) -+ (it (x)(t)

uniformly in t. I
Remark 1. It does not follow automatically from our previous

assumptions that a local minimum xo of the functional F(x) ==
S: IA(x)(t) - j(t)1 dt corresponds to a local best approximation to f from
A(S). However, if A-l(.) exists on a relative neighborhood of A(xo) in A(S)
and is continuous at A(xo) then A(xo) is a local best approximation. This
leads to the following definition.

DEFINITION. A point Xo E S is called normal if

(i) A'(xo ,·) is one to one on EN

(ii) A-l(X) exists on a relative neighborhood of A(xo) in A(S) and is
continuous at A(xo).

If one assumesfis analytic, say, on [a, b] (and not in A(S)) then any local
best approximation must be normal for any of the standard nonlinear
families. (See for example [4] and [1, Theorem 8] noting that the proof
can be adapted to this setting.)

As an application of Theorem 1 we have the following which provides
sufficient conditions for a local minimum of the functional F(x).

COROLLARY 2. Let fE era, b] be differentiable on (a, b) and assume
A(xo) E A(S) is normal and satisfies:
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(i) E(t) = A(xo)(t) - jet) has precisely K roots in [a, b] all of which
are simple and lie in (a, b)

(ii) r sgn(E(t» A'(xo , h)(t) dt = 0 for all hE EN
a

(1'1'1') \ ~ (A'(xo , h)(t;»2 + fb ( (» A If( h 1)( ) d i 0 ifh -..L 0I f;:1 [(dEjdt)(t;) [ a sgn E t XO " 1 t t \ > I -r-.

Then A(xo) is an isolated local best approximation to ffrom A(S) with respect
to the L 1 norm.

Proof Hypotheses (i)-(iii) above and Theorem 2 imply that functional
F(x) = S: I A(x)(t) - j(t)! dt satisfies

(a) F'(xo , h) = 0 for all h E EN

(b) FIf(xO ' h, h) ?o 7J > 0 for all hE EN such that h II = 1.

Thus X o is a local minimum ofFO. The continuity of A-I at X o then implies
that A(xo) is also a local minimum of S: ! ret) - j(t)[ dt as r ranges over
A(S). I

Remark 2. If the hypotheses of Corollary 1 above are satisfied then the
number of roots of E(t) is at least N (see [4]) so that the sum

is strictly positive for nonzero h. (That is the space spanned by (oAjox1)(xO)"'"

(OA/OXN)(XO) is Haar of dimension N (see Remark 1) so that for nonzero h,
A'(xa , h)O has at most N - 1 roots in [a, b]).

Remark 3. The situation when E(t) has multiple roots in [a, b] (but
only a finite number of them) is more complex. One finds in this case
(provided thatfis analytic on [a, b] say) that

FIf( f J) _ l' F'(x + Ah, h) - F'(x, h)
-7 x, 1, 1 - A~~ A

and

FIf( J h) = r F'(x + Ah, h) - F'(x, h)
- x, 1, A~~ >.

both exist for every h and are of the form

~ (A'(x, h)(t;»2 + nonnegative terms + fb sgn(E(t» A"(x, h, h)(t) dt
;~1 [(dEjdt)(t j ) [ a
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where some of the nonnegative terms may be + 00 and where the finite sum
runs over the simple roots of e(t) in (a, b).

We shall not present the full details of the above analysis but instead record
the following simple example to illustrate the basic ideas.

EXAMPLE 1. Let S = E ' and define A: E' -->- C[-I, 1] by A(x) = x (i.e.,
the constant function x) and letf(t) = t 3• Then

F(x) = r I x - t3 I dt
-1

and F'(x, h) = r sgn(x - t3) h dt.
-1

Letting x = 0 we note that P(O, h) = 0 for all h EO E' and that it is the
only parameter with this property. To calculate FI/(x, h, h) where h ,p 0 we
have

F'(O + >"h, h) - F'(O, h) = F'(A11, h) = ! Jl sgn(>"h _ t3) h dt
A >.. >.. -1

I J(t.h)1/3 1 fl
= - h dt +- - h dt

>.. -1 >.. <t.h)1/3

= ~ [>..1/3h l /3+ 1] - ~ [1 - >,,1/3hl /3]

2h4 /3

= 11.2 /3 -->- + 00

as >.. -->- O. Thus, F~(O, h, h) = F~(O, h, h) = +00.

We now have the following result which we only state,

COROLLARY 3. Suppose f is analytic on [a, b] and suppose A(xo) EO A(S) is
normal and satisfies

(i) r sgn(e(t)) A'(xo , h)(t) dt = 0 for all h EO EN
a

(1'1') . f 1~ (A'(xo , h)(tj ))2 fb ( ( )) AI/( h h)() d I 0
In= L. I(d jd)( .)1 + sgn e t x" t t >Ilhll 1 j=1 e t tJ a

where the finite sum is over the simple roots of e(t) in (a, b). Then A(xo) is an
isolated local best approximation to f from A(S).

Remark 4. The results above should have computational significance
since they will allow the application of Newton's method to the solution of
many types of nonlinear L l problems. Of course the problem of locating
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the roots of the error curve is nontrivial but it is likely that fairly crude
approximations will suffice. These computational aspects of the L1 problem
will be considered in a future paper.

UNIQUENESS

We now consider the unicity problem. It is well known that, in general,
not every function (even analytic) will have a unique best approximation
from A(S) (when its best approximation exists). In [1] the topological
properties of the set of elements having unique best approximations in A(S)
was studied in L p norms for p ~ 2 using second derivative techniques.
Using Theorem 1 some of those results will now be extended to the L 1 setting.

THEOREM 2. Let Ot denote the set of functions analytic on [a, b] and let
A(S) be as before. Then the set offunctions having unique best approximations
in A(S) is a dense subset of the set of functions having at least one best
approximation in A(S).

Proof Let fE Ot and assume A(xo) E A(S) is a best approximation to f
LetiA = Af+ (1 - A) A(xo) for each AE (0, 1).

CLAIM. Each fA has A(xo) as its unique best approximation from A(S).

Proof For some AE (0, 1) suppose A(x1) c/= A(xo) is a best approximation
to fA . Then

lif - A(x1)li ~ Ilf - iA il + iiiA - A (Xl) iI
~ Ilf - iA II + IliA - A(xo)!I
= Ilf - A(xo)II ~ Ilf - A(Xl)[i

since A(xo) is best to.f Whence A(xo) is also a best approximation to iA and
Ilf - A(x1)1! = Ilf - iA II + IlfA - A(x1)!I. That is,

rIjet) - A(x1)(t) Idt
a

= (1 - A) rI jet) - A(xo)(t)j dt +r i A(f(t) - A(xo)(t))
a a

+ A(xo)(t) - A(x1)(t) I dt.

But S:! g + h I dt = f: Ig I dt + f: Ih I dt if and only if sgn g = sgn h
whenever both are nonzero ifg and h are continuous. Thus letting g = f - iA
and h = fA - A(x1) we find that sgn{A(f - A(xo)) + (A(xo) - A(x1))] =
sgn[f - A(xo)]. But f - A(xo) changes sign at least N times in the interior of
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(a, b) (see Remark 1). Thus we conclude that A(xo) - A(x1) changes sign at
least N times as well which implies A(xo) = A(x1) by assumption (2). This
is a contradiction and the claim is proved. The conclusion of the theorem is
now clear. I

We shall need the following standard definition.

DEFINITION 1. A subset M of a normed linear space E is called approxi­
matively compact if given any x E E and any sequence {m v} C M such that
[[ x - mv [I -+ dist(x, M) then {mv} has a cluster point in M.

To extend the techniques of [1, 2] to this setting it is required that the
second derivative of F(x) be jointly continuous in x and f The results of
Theorem I indicate this will be true only iffunctions "near" F have derivatives
near f'. Thus we are led to consider the topology .?7 on Of given by fv -+ f
if and only if fv -+ f uniformly and fv' -+ f' uniformly on [a, b]. Clearly,
the topology .?7 is generated by the norm N(f) = [Iflloo + [If' [[00 and so
we can consider Of to be a normed linear space.

Then we have the following local uniqueness theorem.

THEOREM 3. Assume A(S) is approximatively compact and that f E Of has a
unique best approximation A(xo) E A(S) from A(S) such that the error curve
E(t) = A(xo)(t) - jet) has only simple roots all lying in (a, b) and such that

(*) . f I~ (A'(xo , h)(tj ))2 + Ib
( ( )) A"( h h)() d l 0

m~ L. [Cd fd)( .)1 sgn E t xo" t t >Ilhll 1 j~l E t tJ a

where t1 , ... , tK are the roots of E(t) in [a, b]. Then there is a .?7-neighborhood U
offsuch that each g E U has a unique best approximation in A(S).

Proof When we proved [2, Theorem 2] we actually showed the following:
Assume that.fo has a unique best approximation A(xo) and that F"(xo , h, h)
is a positive definite quadratic form. If the mappings (f, x) -+ F' and
(f, x) -+ F" are jointly continuous then there is a neighborhood offsuch that
each g in this neighborhood has a unique best approximation in A(S). It is
straightforward to show that these hypotheses are satisfied using the expres­
sions for F' and F" given in Lemma 2 and Theorem 1. I

Remark 5. The condition that A(S) be approximatively compact is
satisfied by the ordinary rational function, the exponential families, and most
of the standard nonlinear approximating families. Thus, no great restriction
has been made.

The following example illustrates that critical points may exist for F which
are not local minima so that examination of the second derivative is necessary
to check that a given critical point is indeed a (local) minimum.
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EXAMPLE 2. Let S = {(a, f3) E R2 11 f3 I < I}, define A: S -+ q-l, 1] by
A(a, f3) = cxJ(l + f3t) and letf(t) = t. Then

F(x) = f 11 ~ r:I - t Idt and
-1 I fJt

, II (a )( 8A 8A)F (x, 11) = -1 sgn 1 + f3b - t 8a (x) hI + 8/3 (x) h2 dt

_ II (a ) hl (l + f3t) - rxh2t _ T
- -1 sgn 1 + f3t - t (1 + f3t)2 dt where h - (hI' h2) .

Letting a = f3 = ° we have F'(O, h) = f~1 sgn(-t)hl dt = 0 for each
h = (hI, h2)T E R2. To calculate AI/(O, h, h) we note that

so that

oA at
ap- - - (l + f3t)2

Thus,

o2A o2A
orxof3 = of3oa

-t

(l + f3t)2 ,
and

o2A 2at2

0f32 = (1 + 13t)3 •

where [., .J is the usual inner product of R2.
We note also that t = °is the only root of E(t) = -t, that it is simple and

that I E'(O) I = 1. Thus, using Theorem I we have

reo, h, h) = (A'(O, h)(0»2 +r sgn(-t) - 2th1112 dt = 111
2 + 2111112r I t l dt

-1 -1

Then if h = (1, -1)T we have reO, h, h) < 0 while reo, h, h) > 0 if
h = (1, I)T. The map x -+ rex, h, h) is well defined for all h oF °and
continuous in x on some neighborhood of x = 0 and so 0 is in fact a saddle
point of F(x) and not a local minimum. That is, F(x) is strictly increasing in
some directions and strictly decreasing in other directions at x = 0 and
P(O, h) = 0 for all h E R2.

As a final extension of the results in [2] to this setting we consider the best
approximation operator g. That is, for each f E ot having a unique best
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approximation in A(S), g; is the function that assigns to f its best approxi­
mation. Following the methods of [2] we have

THEOREM 4. Assume that the hypotheses of Theorem 3 are satisfied at
f E ot. Then there is a Y-neighborhood of f on which the operator g; is
continuously Frechet differentiable. In particular it is Lipschitz continuous on a
Y-neighborhood off
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